metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[diagualanthanum(III)]tetrakis[*u*-N-(4-acetamidophenvlsulfonyl)glycinato]-[diagualanthanum(III)]bis[*u*-N-(4-acetamidophenylsulfonyl)glycinato]] 4,4'-bipyridine disolvate tetradecahydrate]

Jian-Ge Wang* and Jian-Hua Qin

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: jh_q128105@126.com

Received 17 September 2008: accepted 29 September 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.072; data-to-parameter ratio = 14.6.

In the title compound, $\{[La_2(C_{10}H_{11}N_2O_5S)_6(H_2O)_4]$. $2C_{10}H_8N_2 \cdot 14H_2O_{n}$, the La^{III} ions are in a slightly distorted bicapped trigonal prismatic geometry, and are linked by six carboxylate groups in a syn-syn bidentate bridging fashion to form a one-dimensional inorganic-organic alternating linear chain. These polymeric chains generate microchannels extending along [100], and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the three-dimensional supramolecular network via 15 $O-H \cdots O$, one $O-H \cdots S$, two O-H···N and six N-H···O classical hydrogen bonds. 4,4-Bipyridine acts as an inserting component and hydrogen-bond acceptor, and it is a nonplanar molecule with a dihedral angle of $33.12 (13)^{\circ}$ between the pyridine rings. Owing to the numerous classical hydrogen bonds, the observed weak intermolecular C–H···O, C–H··· π and π - π stacking interactions can be neglected with regard to stabilizing the network.

Related literature

For the structure of a related complex, see: Hu et al. (2007). For other related literature on lanthanides, see: Guo et al. (2005); Pan et al. (2003); Zhao et al. (2004); Zheng et al. (2004).

Experimental

Crystal data

 $[La_2(C_{10}H_{11}N_2O_5S)_6(H_2O)_4]$. $\beta = 105.758 \ (1)^{\circ}$ 2C₁₀H₈N₂·14H₂O $\nu = 93.692 \ (1)^{\circ}$ V = 2707.9 (4) Å³ $M_r = 2542.08$ Triclinic, $P\overline{1}$ Z = 1a = 9.6379 (8) Å Mo $K\alpha$ radiation b = 16.9589 (13) Å $\mu = 0.99 \text{ mm}^{-3}$ c = 17.6005 (14) ÅT = 291 (2) K $\alpha = 99.971 (1)^{\circ}$ $0.25 \times 0.13 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	20875 measured reflections
diffractometer	10013 independent reflection
Absorption correction: multi-scan	8632 reflections with $I > 2\sigma$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.028$
$T_{\min} = 0.790, T_{\max} = 0.925$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	688 parameters
$wR(F^2) = 0.072$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
10013 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1W\cdots O23^{i}$	0.82	2.11	2.872 (3)	153
$O1 - H2W \cdot \cdot \cdot O2^{ii}$	0.83	1.99	2.818 (3)	179
$O2 - H3W \cdot \cdot \cdot N2$	0.84	2.00	2.827 (4)	171
$O2-H4W \cdot \cdot \cdot O4^{ii}$	0.83	1.98	2.744 (3)	154
$O3 - H5W \cdot \cdot \cdot O9^{iii}$	0.85	1.98	2.801 (4)	162
O3−H6W···O14 ^{iv}	0.84	1.94	2.772 (3)	175
$O4-H7W \cdot \cdot \cdot N1^{v}$	0.83	1.99	2.781 (4)	158
$O4-H8W \cdot \cdot \cdot O12^{vi}$	0.82	2.41	3.166 (3)	154
$O4-H8W \cdot \cdot \cdot S1^{vi}$	0.82	2.94	3.711 (3)	156
O5−H9W···O4	0.84	2.04	2.865 (4)	167
O5−H10W···O11	0.83	2.03	2.844 (4)	168
$O6-H11W\cdots O5$	0.84	1.91	2.716 (4)	160
O6−H12W···O18	0.84	2.01	2.805 (3)	158
O7−H13W···O13	0.83	2.12	2.914 (4)	160
$O7 - H14W \cdots O6$	0.84	2.00	2.810 (4)	165
$O8-H15WO19^{v}$	0.83	2.00	2.722 (4)	145
O8-H16WO7	0.91	1.88	2.708 (4)	151
O9-H17WO8	0.83	2.00	2.751 (4)	151
N3-H3···O6 ^{vii}	0.86	2.15	3.007 (4)	171
$N4-H4\cdots O16^{viii}$	0.85	2.30	3.151 (3)	173
N5-H5···O3 ^{vii}	0.86	2.06	2.921 (4)	177
$N6-H6\cdots O20$	0.86	2.19	3.040 (3)	169

10013 independent reflections

8632 reflections with $I > 2\sigma(I)$

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N7 - H7 \cdot \cdot \cdot O8^{ix}$	0.86	2.02	2.878 (4)	172
N8−H8···O17	0.86	2.33	2.974 (3)	131

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Luo Yang Normal University for supporting thise work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2111).

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, X.-D., Zhu, G.-S., Fang, Q.-R., Xue, M., Tian, G., Sun, J.-Y. & Li, X.-T. (2005). Inorg. Chem. 44, 3850–3855.
- Hu, D.-X., Chen, P.-K., Luo, F., Che, Y.-X. & Zheng, J.-M. J. (2007). J. Mol. Struct. 837, 179–184.
- Pan, L., Adams, K.-M., Hernandez, H.-E., Wang, X.-T., Zheng, C., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3067.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhao, B., Cheng, P., Chen, X.-Y., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013.

Zheng, X.-J., Sun, C.-Y., Lu, S.-Z., Liao, F.-H., Gao, S. & Jin, L.-P. (2004). Eur. J. Inorg. Chem. pp.3262–3268.

Acta Cryst. (2008). E64, m1364-m1365 [doi:10.1107/S1600536808031450]

$catena\-Poly[[[diaqualanthanum(III)]-tetrakis[\multiplue{μ-$N-(4-acetamidophenylsulfonyl)glycinato]-} [diaqualanthanum(III)]-bis[\multiplue{μ-$N-(4-acetamidophenylsulfonyl)glycinato]]} 4,4'-bipyridine disolvate tetradecahydrate]$

J.-G. Wang and J.-H. Qin

Comment

Organic carboxylates or N-donor ligands have been widely used in construction of coordination polymers containing transition metals. Meanwhile, in contrast to the well investigated transition metal system, the lanthanide coordination polymers have been less studied (Pan *et al.*, 2003; Zhao *et al.*, 2004; Guo *et al.*, 2005). Whereas, lanthanide ions, with their high and variable coordination numbers, flexible coordination environments and luminescence properties, provide unique opportunities for discovery of unusual network topologies, biochemical sensors and fluoroimmunoassays (Hu *et al.*, 2007; Zheng *et al.*, 2004).

In the title compound, the asymmetric structure unit consists of one La^{III} ion, three *N*—*p*-acetamidobenzenesulfonylglycine acid(abglyH₂) ligands, two coordinated water molecules, one uncoordinated 4,4-bipy molecule and seven lattice water molecules. The coordination geometry of the La ion shows a slightly distorted bicapped trigonal prism (Fig. 1). The alternation of two and four bridging abglyH⁻ ligands between adjacent La centers gives one-dimensional inorganic-organic alternating linear chains (Fig. 2), which are further connected to generate a three-dimensional supramolecular structure, by O—H…O, O—H…N, and N—H…O hydrogen bonds (Table 1). 4,4-bipyridine acts as an inserting component that has a subtle effect on the structural characteristics by self-assembled control, not as an excellent rodlike bifunctional bridging ligand as in the other multidimensional mixed-ligand coordination systems, which may result from the nature of lanthanide ions having a strong affinity to oxygen atom. 4,4-bipyridine is a non-planar molecule and the dihedral angle is 33.12 (13)°.

Experimental

The mixture of $La(NO_3)_3(0.2 \text{ mmol})$ and *N*-*p*-acetamidobenzenesulfonyl-glycine acid (abglyH₂)(0.6 mmol), was stirred into 15 ml aqueous solution. Then the pH was adjusted to 5 or so with 1 *M* NaOH. And then 3 ml ethanol solution of 4, 4'-bipyridine (0.2 mmol) was added. The reaction mixture was heated on a water bath for 10 h at 343 K, and then filtered. Colorless crystals were produced after 20 days.

Refinement

Water H atoms were located in a difference Fourier and allowed to ride in the range 0.80 - 0.91 Å with $U_{iso}(H) = 1.5$ $U_{eq}(O)$. Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH) and Uiso~(H) = 1.2Ueq(C), with C—H = 0.97 Å (CH2) and Uiso~(H) = 1.2Ueq(C), with C—H = 0.96 Å(CH3) and Uiso~(H) = 1.5Ueq(C) and with N—H = 0.86 Å (NH) and Uiso~(H) = 1.2Ueq(N). **Figures**

Fig. 1. A view of the title compound, H atoms, the 4,4'-bipyridine and the hydrate water molecules are omitted for clarity. The symmetry-related three ligands are unlabelled except for O10A, O21A, O16B. Symmetry code: A = 1 - x, 1 - y, -z, B = -x, 1 - y, -z.

Fig. 2. A view of the chain structure of (I).

catena-Poly[[[diaqualanthanum(III)]-tetrakis[µ-N-(4- acetamidophenylsulfonyl)glycinato]-[diaqualanthanum(III)]-bis[µ-N- (4-acetamidophenylsulfonyl)glycinato]] 4,4'-bipyridine disolvate tetradecahydrate]

Crystal data

$[La_{2}(C_{10}H_{11}N_{2}O_{5}S)_{6}(H_{2}O)_{4}]\cdot 2C_{10}H_{8}N_{2}\cdot 14H_{2}O$	Z = 1
$M_r = 2542.08$	$F_{000} = 1304$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.559 {\rm ~Mg~m}^{-3}$
<i>a</i> = 9.6379 (8) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 16.9589 (13) Å	Cell parameters from 6389 reflections
c = 17.6005 (14) Å	$\theta = 2.5 - 26.6^{\circ}$
$\alpha = 99.971 \ (1)^{\circ}$	$\mu = 0.99 \text{ mm}^{-1}$
$\beta = 105.758 \ (1)^{\circ}$	T = 291 (2) K
$\gamma = 93.692 (1)^{\circ}$	Block, colorless
$V = 2707.9 (4) \text{ Å}^3$	$0.25\times0.13\times0.08~mm$

Data collection

10013 independent reflections
8632 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\text{max}} = 25.5^{\circ}$
$\theta_{\min} = 2.4^{\circ}$
$h = -11 \rightarrow 11$
$k = -20 \rightarrow 20$
$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained

$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0313P)^2 + 0.7554P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
10013 reflections	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
688 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
La1	0.258177 (16)	0.499734 (10)	-0.006109 (9)	0.02304 (6)
S1	0.89294 (8)	0.61909 (5)	0.34921 (5)	0.03773 (19)
S2	0.40219 (7)	0.42159 (4)	0.29358 (4)	0.02678 (16)
S3	0.79434 (8)	0.25355 (4)	0.15572 (5)	0.03198 (17)
01	0.1618 (2)	0.63523 (12)	0.02011 (13)	0.0401 (5)
H1W	0.1905	0.6766	0.0076	0.060*
H2W	0.0832	0.6385	0.0304	0.060*
O2	0.1060 (2)	0.35582 (12)	-0.05495 (13)	0.0386 (5)
H3W	0.1297	0.3181	-0.0310	0.058*
H4W	0.0889	0.3404	-0.1041	0.058*
O3	0.9777 (3)	0.89637 (17)	0.55106 (19)	0.0810 (9)
H5W	1.0301	0.9414	0.5706	0.121*
H6W	1.0277	0.8587	0.5598	0.121*
O4	0.0218 (3)	0.72632 (16)	0.20987 (16)	0.0789 (9)
H7W	0.0659	0.7723	0.2191	0.118*
H8W	0.0159	0.7125	0.2516	0.118*
O5	0.2932 (4)	0.6603 (2)	0.24267 (18)	0.1020 (11)
H9W	0.2167	0.6808	0.2264	0.153*
H10W	0.3196	0.6362	0.2049	0.153*

O6	0.4132 (3)	0.64998 (15)	0.39867 (17)	0.0699 (8)
H11W	0.3585	0.6546	0.3543	0.105*
H12W	0.4297	0.6019	0.3966	0.105*
O7	0.6218 (3)	0.78156 (17)	0.4194 (2)	0.0926 (10)
H13W	0.6996	0.7618	0.4238	0.139*
H14W	0.5515	0.7454	0.4052	0.139*
08	0.6063 (3)	0.91138 (16)	0.34828 (18)	0.0782 (9)
H15W	0.5455	0.9364	0.3641	0.117*
H16W	0.5898	0.8604	0.3557	0.117*
O9	0.9044 (4)	0.9414 (2)	0.3991 (2)	0.1052 (11)
H17W	0.8183	0.9502	0.3867	0.158*
H18W	0.9513	0.9024	0.4112	0.158*
O10	0.6339 (2)	0.56824 (14)	0.10554 (12)	0.0466 (6)
O11	0.4217 (2)	0.57523 (12)	0.13048 (12)	0.0365 (5)
O12	1.0380 (2)	0.61964 (15)	0.34221 (14)	0.0547 (7)
O13	0.8544 (3)	0.68756 (14)	0.39538 (14)	0.0525 (6)
O14	0.8725 (3)	0.23576 (15)	0.42586 (15)	0.0578 (7)
015	0.1129 (2)	0.48426 (12)	0.08728 (11)	0.0336 (5)
O16	-0.07047 (19)	0.50076 (12)	0.14005 (11)	0.0338 (5)
017	0.53348 (19)	0.41848 (12)	0.27017 (12)	0.0346 (5)
O18	0.3960 (2)	0.48139 (12)	0.36059 (12)	0.0397 (5)
O19	0.4620 (3)	0.04174 (16)	0.3733 (2)	0.0774 (9)
O20	0.3830 (2)	0.39887 (12)	0.06651 (12)	0.0353 (5)
O21	0.6009 (2)	0.39877 (14)	0.04656 (14)	0.0490 (6)
O22	0.9197 (2)	0.28575 (13)	0.22222 (13)	0.0436 (5)
O23	0.8024 (2)	0.24757 (13)	0.07503 (13)	0.0435 (5)
O24	0.5300 (4)	-0.14674 (17)	0.0583 (2)	0.0925 (11)
N1	0.1019 (4)	-0.1134 (2)	0.2089 (2)	0.0775 (11)
N2	0.1528 (3)	0.22331 (19)	0.0229 (2)	0.0563 (8)
N3	0.7608 (3)	0.33389 (16)	0.48231 (15)	0.0403 (6)
H3	0.7066	0.3425	0.5138	0.048*
N4	0.7902 (2)	0.60788 (15)	0.25785 (14)	0.0345 (6)
H4	0.8214	0.5761	0.2250	0.041*
N5	0.2777 (3)	0.11179 (16)	0.39024 (17)	0.0453 (7)
Н5	0.2003	0.1090	0.4055	0.054*
N6	0.2788 (2)	0.43271 (14)	0.21596 (14)	0.0299 (5)
H6	0.2968	0.4242	0.1702	0.036*
N7	0.6052 (3)	-0.07706 (17)	0.18688 (19)	0.0569 (8)
H7	0.6140	-0.0819	0.2357	0.068*
N8	0.6694 (3)	0.30760 (15)	0.16910 (15)	0.0364 (6)
H8	0.6871	0.3433	0.2127	0.044*
C1	0.0358 (4)	-0.0486 (3)	0.2233 (2)	0.0661 (11)
H1	-0.0241	-0.0493	0.2568	0.079*
C2	0.0498 (4)	0.0198 (2)	0.1921 (2)	0.0566 (10)
H2	0.0004	0.0632	0.2048	0.068*
C3	0.1373 (4)	0.0238 (2)	0.1419 (2)	0.0543 (9)
C4	0.2095 (5)	-0.0430 (3)	0.1278 (3)	0.0819 (15)
H4A	0.2716	-0.0434	0.0955	0.098*
C5	0.1892 (6)	-0.1087 (3)	0.1616 (4)	0.1008 (18)

H5A	0.2391	-0.1525	0.1510	0.121*
C6	0.1388 (4)	0.2322 (2)	0.0971 (2)	0.0538 (9)
H6A	0.1310	0.2837	0.1229	0.065*
C7	0.1351 (4)	0.1704 (2)	0.1382 (2)	0.0491 (9)
H7A	0.1246	0.1806	0.1898	0.059*
C8	0.1470 (4)	0.0932 (2)	0.1023 (2)	0.0478 (9)
C9	0.1627 (5)	0.0831 (2)	0.0258 (3)	0.0688 (12)
Н9	0.1717	0.0322	-0.0009	0.083*
C10	0.1652 (5)	0.1486 (3)	-0.0111 (3)	0.0710 (12)
H10	0.1762	0.1399	-0.0627	0.085*
C11	0.7557 (5)	0.2052 (2)	0.5219 (2)	0.0692 (12)
H11A	0.6888	0.1607	0.4873	0.104*
H11B	0.7094	0.2352	0.5575	0.104*
H11C	0.8393	0.1853	0.5530	0.104*
C12	0.8020 (4)	0.2592 (2)	0.4717 (2)	0.0442 (8)
C13	0.7945 (3)	0.39958 (19)	0.44881 (17)	0.0342 (7)
C14	0.7545 (4)	0.4732 (2)	0.47753 (18)	0.0436 (8)
H14	0.7073	0.4773	0.5174	0.052*
C15	0.7837 (4)	0.5404 (2)	0.44775 (18)	0.0426 (8)
H15	0.7568	0.5897	0.4677	0.051*
C16	0.8528 (3)	0.53434 (18)	0.38848 (17)	0.0326 (7)
C17	0.8907 (3)	0.4608 (2)	0.35814 (19)	0.0414 (8)
H17	0.9350	0.4566	0.3171	0.050*
C18	0.8631 (3)	0.3936 (2)	0.38838 (19)	0.0405 (8)
H18	0.8903	0.3444	0.3684	0.049*
C19	0.6322 (3)	0.60124 (18)	0.24138 (17)	0.0315 (7)
H19A	0.6044	0.6521	0.2640	0.038*
H19B	0.6010	0.5600	0.2671	0.038*
C20	0.5574 (3)	0.57995 (16)	0.15174 (17)	0.0278 (6)
C21	0.2910 (4)	-0.0189 (2)	0.4262 (3)	0.0635 (11)
H21A	0.2954	-0.0701	0.3941	0.095*
H21B	0.1918	-0.0127	0.4242	0.095*
H21C	0.3467	-0.0165	0.4810	0.095*
C22	0.3518 (4)	0.0474 (2)	0.3941 (2)	0.0489 (9)
C23	0.3099 (3)	0.18314 (18)	0.36461 (19)	0.0371 (7)
C24	0.2253 (3)	0.24512 (19)	0.3760 (2)	0.0425 (8)
H24	0.1507	0.2379	0.3993	0.051*
C25	0.2512 (3)	0.31701 (19)	0.35326 (18)	0.0382 (7)
H25	0.1944	0.3582	0.3613	0.046*
C26	0.3621 (3)	0.32816 (17)	0.31820 (16)	0.0291 (6)
C27	0.4451 (3)	0.26621 (19)	0.30571 (19)	0.0396 (8)
H27	0.5189	0.2734	0.2819	0.048*
C28	0.4193 (4)	0.1935 (2)	0.3285 (2)	0.0448 (8)
H28	0.4749	0.1520	0.3195	0.054*
C29	0.13/1 (3)	0.45656 (18)	0.21862 (17)	0.0293 (6)
н29А	0.1504	0.5004	0.2643	0.035*
П29В	0.0794	0.4115	0.14211 (10)	0.033*
C30	0.0555 (3)	0.4829/(10)	0.14311(10)	0.0242 (6)
(31	0.5402 (6)	-0.2210 (2)	0.1623 (3)	0.0936 (16)

H31A	0.4702	-0.2606	0.1222	0.140*
H31B	0.5082	-0.2087	0.2096	0.140*
H31C	0.6322	-0.2418	0.1757	0.140*
C32	0.5558 (4)	-0.1454 (2)	0.1296 (3)	0.0618 (11)
C33	0.6435 (4)	0.00059 (19)	0.1758 (2)	0.0422 (8)
C34	0.6969 (4)	0.0612 (2)	0.2442 (2)	0.0486 (9)
H34	0.7012	0.0497	0.2945	0.058*
C35	0.7435 (4)	0.1381 (2)	0.2387 (2)	0.0449 (8)
H35	0.7798	0.1779	0.2849	0.054*
C36	0.7356 (3)	0.15532 (17)	0.16363 (18)	0.0328 (7)
C37	0.6801 (4)	0.0964 (2)	0.0957 (2)	0.0467 (8)
H37	0.6738	0.1084	0.0454	0.056*
C38	0.6338 (4)	0.0197 (2)	0.1014 (2)	0.0525 (9)
H38	0.5958	-0.0196	0.0549	0.063*
C39	0.5270 (3)	0.29862 (17)	0.11036 (17)	0.0307 (7)
H39A	0.4526	0.2903	0.1368	0.037*
H39B	0.5182	0.2513	0.0688	0.037*
C40	0.5024 (3)	0.37176 (16)	0.07175 (16)	0.0266 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.01933 (8)	0.02993 (10)	0.02388 (9)	0.00613 (6)	0.00830 (6)	0.01146 (7)
S1	0.0345 (4)	0.0441 (5)	0.0298 (4)	-0.0070 (4)	0.0029 (3)	0.0090 (4)
S2	0.0236 (3)	0.0294 (4)	0.0283 (4)	0.0054 (3)	0.0055 (3)	0.0106 (3)
S3	0.0291 (4)	0.0326 (4)	0.0405 (4)	0.0096 (3)	0.0136 (3)	0.0156 (3)
01	0.0328 (11)	0.0365 (12)	0.0628 (15)	0.0106 (9)	0.0250 (11)	0.0203 (11)
O2	0.0398 (12)	0.0346 (12)	0.0428 (13)	0.0061 (10)	0.0122 (10)	0.0104 (10)
O3	0.0721 (18)	0.0707 (19)	0.130 (3)	0.0270 (15)	0.0518 (19)	0.0552 (19)
O4	0.115 (2)	0.0629 (19)	0.0624 (18)	-0.0146 (17)	0.0333 (18)	0.0175 (15)
O5	0.098 (2)	0.146 (3)	0.068 (2)	0.041 (2)	0.0359 (19)	0.009 (2)
O6	0.091 (2)	0.0465 (16)	0.081 (2)	0.0101 (14)	0.0397 (17)	0.0114 (14)
07	0.098 (2)	0.065 (2)	0.126 (3)	0.0141 (17)	0.040 (2)	0.0344 (19)
08	0.099 (2)	0.0625 (18)	0.101 (2)	0.0310 (16)	0.0561 (19)	0.0379 (17)
09	0.096 (2)	0.106 (3)	0.133 (3)	0.020 (2)	0.043 (2)	0.056 (2)
O10	0.0436 (13)	0.0706 (17)	0.0307 (12)	0.0262 (12)	0.0160 (10)	0.0081 (11)
011	0.0286 (11)	0.0454 (13)	0.0337 (12)	0.0027 (9)	0.0060 (9)	0.0081 (10)
012	0.0304 (12)	0.0812 (19)	0.0475 (14)	-0.0134 (12)	0.0032 (11)	0.0199 (13)
013	0.0668 (16)	0.0419 (14)	0.0428 (14)	-0.0031 (12)	0.0101 (12)	0.0044 (11)
O14	0.0787 (18)	0.0514 (16)	0.0529 (16)	0.0204 (14)	0.0284 (14)	0.0162 (13)
015	0.0289 (10)	0.0503 (13)	0.0288 (11)	0.0078 (9)	0.0136 (9)	0.0178 (10)
O16	0.0218 (10)	0.0515 (13)	0.0320 (11)	0.0142 (9)	0.0085 (9)	0.0141 (10)
017	0.0224 (10)	0.0384 (12)	0.0452 (12)	0.0048 (9)	0.0084 (9)	0.0156 (10)
O18	0.0454 (13)	0.0376 (13)	0.0327 (12)	0.0072 (10)	0.0069 (10)	0.0043 (10)
O19	0.082 (2)	0.0539 (17)	0.132 (3)	0.0332 (15)	0.062 (2)	0.0535 (18)
O20	0.0316 (11)	0.0431 (13)	0.0377 (12)	0.0163 (10)	0.0119 (10)	0.0173 (10)
O21	0.0377 (12)	0.0573 (15)	0.0640 (16)	0.0024 (11)	0.0208 (12)	0.0350 (13)
O22	0.0305 (11)	0.0435 (13)	0.0537 (14)	0.0036 (10)	0.0049 (11)	0.0132 (11)

O23	0.0518 (14)	0.0434 (13)	0.0476 (14)	0.0143 (11)	0.0262 (11)	0.0197 (11)
O24	0.134 (3)	0.0467 (18)	0.070 (2)	-0.0152 (17)	-0.007(2)	0.0095 (16)
N1	0.080 (3)	0.065 (2)	0.100 (3)	0.018 (2)	0.031 (2)	0.036 (2)
N2	0.0494 (18)	0.049 (2)	0.070 (2)	-0.0031 (15)	0.0138 (17)	0.0179 (17)
N3	0.0515 (16)	0.0413 (16)	0.0330 (15)	0.0045 (13)	0.0189 (13)	0.0102 (12)
N4	0.0294 (13)	0.0478 (16)	0.0263 (13)	0.0003 (12)	0.0070 (11)	0.0108 (12)
N5	0.0483 (16)	0.0425 (17)	0.0569 (18)	0.0110 (13)	0.0227 (14)	0.0273 (14)
N6	0.0282 (12)	0.0412 (15)	0.0268 (13)	0.0155 (11)	0.0112 (11)	0.0147 (11)
N7	0.076 (2)	0.0382 (18)	0.059 (2)	0.0015 (16)	0.0182 (17)	0.0183 (15)
N8	0.0349 (14)	0.0370 (15)	0.0355 (14)	0.0140 (12)	0.0063 (12)	0.0047 (12)
C1	0.067 (3)	0.071 (3)	0.066 (3)	0.010 (2)	0.023 (2)	0.025 (2)
C2	0.059 (2)	0.055 (2)	0.059 (2)	0.0136 (19)	0.019 (2)	0.0149 (19)
C3	0.053 (2)	0.049 (2)	0.068 (3)	0.0160 (18)	0.023 (2)	0.0154 (19)
C4	0.090 (3)	0.066 (3)	0.126 (4)	0.042 (3)	0.067 (3)	0.046 (3)
C5	0.108 (4)	0.071 (3)	0.166 (6)	0.050 (3)	0.078 (4)	0.061 (4)
C6	0.048 (2)	0.043 (2)	0.066 (3)	0.0040 (17)	0.0122 (19)	0.0064 (19)
C7	0.045 (2)	0.050 (2)	0.051 (2)	0.0071 (17)	0.0121 (17)	0.0077 (18)
C8	0.045 (2)	0.043 (2)	0.057 (2)	0.0082 (16)	0.0160 (18)	0.0119 (18)
С9	0.091 (3)	0.048 (2)	0.076 (3)	0.013 (2)	0.040 (3)	0.009 (2)
C10	0.094 (3)	0.062 (3)	0.062 (3)	0.000 (2)	0.033 (2)	0.010 (2)
C11	0.098 (3)	0.050 (2)	0.073 (3)	0.005 (2)	0.040 (3)	0.023 (2)
C12	0.052 (2)	0.040 (2)	0.0368 (19)	0.0004 (16)	0.0081 (17)	0.0077 (15)
C13	0.0336 (16)	0.0413 (19)	0.0251 (15)	0.0006 (14)	0.0034 (13)	0.0088 (14)
C14	0.059 (2)	0.049 (2)	0.0317 (17)	0.0097 (17)	0.0246 (16)	0.0124 (15)
C15	0.056 (2)	0.042 (2)	0.0336 (18)	0.0098 (16)	0.0166 (16)	0.0080 (15)
C16	0.0313 (16)	0.0404 (18)	0.0241 (15)	0.0005 (14)	0.0040 (13)	0.0085 (13)
C17	0.0400 (18)	0.054 (2)	0.0367(18)	0.0067 (16)	0.0195 (15)	0.0121 (16)
C18	0.0423 (18)	0.001(2)	0.0207(10) 0.0413(19)	0.0145(15)	0.0167 (16)	0.0121(10)
C19	0.0300(15)	0.0376(17)	0.0289(16)	0.0028(13)	0.0102 (13)	0.0100(13)
C20	0.0350(15)	0.0273(15)	0.0267(15)	0.0020(12)	0.0102(13)	0.0100(12) 0.0056(12)
C21	0.073(3)	0.0223(13)	0.0207(10)	0.0002(12)	0.028(2)	0.039(2)
C22	0.075(3)	0.043(2)	0.005(3)	0.012(2)	0.028(2)	0.039(2) 0.0239(17)
C22	0.034(2)	0.045(2)	0.037(2)	0.0100(10) 0.0054(14)	0.0107(15)	0.0237(17) 0.0197(15)
C23	0.0407(18)	0.0351(18)	0.0403(18)	0.0034(14)	0.0117(13)	0.0177(13) 0.0258(17)
C24	0.0434(13)	0.043(2)	0.033(2)	0.0123(10)	0.0244(17)	0.0238(17) 0.0205(15)
C25	0.0304(17)	0.0413(1)	0.0447(15)	0.0107(13)	0.0164(13)	0.0203(13)
C20	0.0322(13)	0.0302(10)	0.0209(13)	0.0009(13)	0.0002(13)	0.0132(13) 0.0212(16)
C27	0.0400(18)	0.0427(19)	0.048(2)	0.0134(13)	0.0233(10)	0.0213(10)
C28	0.030(2)	0.0380(19)	0.039(2)	0.0211(10)	0.0208(18)	0.0228(17)
C29	0.0223(14)	0.0414(18)	0.0303(10)	0.0090(13)	0.0114(12)	0.0105(15) 0.0075(12)
C30	0.0197(13)	0.0200(13)	0.0277(13)	0.0002 (11)	0.0071(12)	0.0073(12)
C31	0.130(4)	0.036(2)	0.116 (4)	-0.001(3)	0.032(4)	0.027(3)
C32	0.065(3)	0.037(2)	0.076 (3)	-0.0011(19)	0.006 (2)	0.017(2)
C33	0.0458 (19)	0.0318 (18)	0.052 (2)	0.0057 (15)	0.0139(17)	0.0105 (10)
C34	0.068 (2)	0.042(2)	0.043(2)	0.0083(18)	0.0227(18)	0.01/1(17)
035	0.063 (2)	0.0364 (19)	0.0403 (19)	0.008/(16)	0.0196 (17)	0.0120 (15)
C36	0.0364 (16)	0.0282 (16)	0.0378 (17)	0.0121 (13)	0.0118 (14)	0.0126 (14)
C37	0.064 (2)	0.039 (2)	0.0360 (19)	0.0074 (17)	0.0098 (17)	0.0128 (16)
C38	0.076 (3)	0.036 (2)	0.039 (2)	0.0008 (18)	0.0058 (18)	0.0078 (16)
C39	0.0269 (15)	0.0316 (17)	0.0360 (17)	0.0065 (13)	0.0090 (13)	0.0118 (13)

C40	0.0263 (15)	0.0295 (16)	0.0261 (15)	0.0028 (12)	0.0084 (12)	0.0096 (12)
Geometric paran	neters (Å, °)					
La1—O10 ⁱ		2.433 (2)	C1—C2	2	1.3	81 (5)
$La1 - 021^{i}$		2.442 (2)	С1—Н	1	0.9	300
La1-015		2 4662 (18)	C2—C	3	1 3	83 (5)
La1 -020		2.4887 (19)	С2—Н	2	0.9	300
La1-O1		2.549 (2)	C3—C4	4	1.3	88 (5)
$La1 - 016^{ii}$		2.5505 (18)	C3—C3	8	1.4	79 (5)
La1—011		2,553 (2)	C4—C'	5	13	78 (6)
La1—O2		2.641 (2)	C4—H4	4A	0.9	300
S1-013		1428(2)	С5—Н	5A	0.9	300
S1-012		1.436 (2)	C6—C	7	1.3	77 (5)
S1—N4		1.615 (2)	С6—Н	6A	0.9	300
S1—C16		1.764 (3)	C7—C8	8	1.3	78 (5)
S2—O18		1.434 (2)	С7—Н	7A	0.9	300
S2—O17		1.4345 (19)	C8—C9)	1.3	77 (5)
S2—N6		1.598 (2)	С9—С	10	1.3	83 (5)
S2—C26		1.760 (3)	С9—Н	9	0.9	300
S3—O23		1.430 (2)	C10—H	410	0.9	300
S3—O22		1.433 (2)	C11—0	212	1.5	02 (5)
S3—N8		1.602 (2)	C11—H	H11A	0.9	600
S3—C36		1.765 (3)	C11—H	H11B	0.9	600
O1—H1W		0.8232	C11—H	H11C	0.9	600
O1—H2W		0.8290	C13—0	214	1.3	83 (4)
O2—H3W		0.8361	C13—0	C18	1.3	90 (4)
O2—H4W		0.8265	C14—0	C15	1.3	79 (4)
O3—H5W		0.8497	C14—H	H14	0.9	300
O3—H6W		0.8351	C15—C	C16	1.3	75 (4)
O4—H7W		0.8315	C15—H	415	0.9	300
O4—H8W		0.8231	C16—0	C17	1.3	81 (4)
O5—H9W		0.8356	C17—C	C18	1.3	79 (4)
O5—H10W		0.8273	C17—H	417	0.9	300
O6—H11W		0.8353	C18—H	418	0.9	300
O6—H12W		0.8372	C19—C	220	1.5	13 (4)
O7—H13W		0.8312	C19—H	119A	0.9	700
O7—H14W		0.8362	C19—H	H19B	0.9	700
O8—H15W		0.8261	C21—C	222	1.4	98 (4)
O8—H16W		0.9075	C21—H	H21A	0.9	600
O9—H17W		0.8282	C21—H	H21B	0.9	600
O9—H18W		0.8497	C21—H	H21C	0.9	600
O10—C20		1.238 (3)	C23—C	228	1.3	88 (4)
O10—La1 ⁱ		2.433 (2)	C23—0	224	1.3	91 (4)
O11—C20		1.252 (3)	C24—C	225	1.3	76 (4)
O14—C12		1.221 (4)	C24—H	124	0.9	300
O15—C30		1.254 (3)	C25—C	226	1.3	90 (4)
O16—C30		1.259 (3)	C25—H	125	0.9	300

O16—La1 ⁱⁱ	2.5505 (18)	C26—C27	1.385 (4)
O19—C22	1.217 (4)	C27—C28	1.388 (4)
O20—C40	1.253 (3)	С27—Н27	0.9300
O21—C40	1.245 (3)	C28—H28	0.9300
O21—La1 ⁱ	2.442 (2)	C29—C30	1.506 (4)
O24—C32	1.207 (5)	С29—Н29А	0.9700
N1—C1	1.327 (5)	С29—Н29В	0.9700
N1—C5	1.343 (6)	C31—C32	1.507 (5)
N2—C10	1.332 (5)	C31—H31A	0.9600
N2—C6	1.333 (5)	C31—H31B	0.9600
N3—C12	1.350 (4)	C31—H31C	0.9600
N3—C13	1.407 (4)	C33—C38	1.382 (4)
N3—H3	0.8600	C33—C34	1.392 (5)
N4—C19	1.463 (3)	C34—C35	1.378 (4)
N4—H4	0.8505	C34—H34	0.9300
N5	1.345 (4)	C35—C36	1.386 (4)
N5	1.407 (4)	C35—H35	0.9300
N5—H5	0.8000	$C_{30} = C_{37}$	1.3/2(4) 1.277(4)
N6 H6	1.439 (3)	C37_C38 C37_H37	0.0300
N7	1 360 (5)	C38_H38	0.9300
N7—C33	1 405 (4)	C39—C40	1 516 (4)
N7—H7	0.8600	C39—H39A	0.9700
N8—C39	1.457 (3)	C39—H39B	0.9700
N8—H8	0.8600		
N8—H8 O10 ⁱ —La1—O21 ⁱ	0.8600 71.49 (8)	N2—C10—C9	123.8 (4)
N8—H8 O10 ⁱ —La1—O21 ⁱ O10 ⁱ —La1—O15	0.8600 71.49 (8) 146.41 (8)	N2—C10—C9 N2—C10—H10	123.8 (4) 118.1
N8—H8 O10 ⁱ —La1—O21 ⁱ O10 ⁱ —La1—O15 O21 ⁱ —La1—O15	0.8600 71.49 (8) 146.41 (8) 141.98 (8)	N2—C10—C9 N2—C10—H10 C9—C10—H10	123.8 (4) 118.1 118.1
N8—H8 O10 ⁱ —La1—O21 ⁱ O10 ⁱ —La1—O15 O21 ⁱ —La1—O15 O10 ⁱ —La1—O20	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A	123.8 (4) 118.1 118.1 109.5
N8—H8 O 10^{i} —La1—O 21^{i} O 10^{i} —La1—O15 O 21^{i} —La1—O15 O 10^{i} —La1—O20 O 21^{i} —La1—O20	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B	123.8 (4) 118.1 118.1 109.5 109.5
N8—H8 O10 ⁱ —La1—O21 ⁱ O10 ⁱ —La1—O15 O21 ⁱ —La1—O15 O10 ⁱ —La1—O20 O21 ⁱ —La1—O20 O15—La1—O20	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B	123.8 (4) 118.1 118.1 109.5 109.5 109.5
N8—H8 O 10^{i} —La1—O 21^{i} O 10^{i} —La1—O 15 O 21^{i} —La1—O 15 O 10^{i} —La1—O 20 O 21^{i} —La1—O 20 O 15 —La1—O 20 O 10^{i} —La1—O 1	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11B	123.8 (4) 118.1 118.1 109.5 109.5 109.5 109.5
N8—H8 $O10^{i}$ —La1—O21 ⁱ $O10^{i}$ —La1—O15 $O21^{i}$ —La1—O15 $O10^{i}$ —La1—O20 $O21^{i}$ —La1—O20 O15—La1—O20 $O10^{i}$ —La1—O1 $O21^{i}$ —La1—O1	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11A—C11—H11C	123.8 (4) 118.1 109.5 109.5 109.5 109.5 109.5
N8—H8 O 10^{i} —La1—O 21^{i} O 10^{i} —La1—O 15 O 21^{i} —La1—O 15 O 10^{i} —La1—O 20 O 21^{i} —La1—O 20 O 15 —La1—O 20 O 10^{i} —La1—O 1 O 21^{i} —La1—O 1 O 15 —La1—O 1	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11A—C11—H11C H11B—C11—H11C	123.8 (4) 118.1 109.5 109.5 109.5 109.5 109.5 109.5
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O15 - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O15 - La1 - O1$ $O20 - La1 - O1$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11A—C11—H11C H11B—C11—H11C O14—C12—N3	123.8 (4) 118.1 118.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3)
N8—H8 $O10^{i}$ —La1—O21 ⁱ $O10^{i}$ —La1—O15 $O21^{i}$ —La1—O15 $O10^{i}$ —La1—O20 $O21^{i}$ —La1—O20 O15—La1—O20 $O10^{i}$ —La1—O1 $O21^{i}$ —La1—O1 O15—La1—O1 O20—La1—O1 $O10^{i}$ —La1—O1 $O10^{i}$ —La1—O1	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11B—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11	123.8 (4) 118.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3)
N8—H8 $O10^{i}$ —La1—O21 ⁱ $O10^{i}$ —La1—O15 $O21^{i}$ —La1—O15 $O10^{i}$ —La1—O20 O15—La1—O20 O15—La1—O20 $O10^{i}$ —La1—O1 $O21^{i}$ —La1—O1 O15—La1—O1 O20—La1—O1 $O10^{i}$ —La1—O16 ⁱⁱ $O21^{i}$ —La1—O16 ⁱⁱ	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11A—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11 N3—C12—C11	123.8 (4) 118.1 118.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3) 114.8 (3)
N8—H8 $O10^{i}$ —La1—O21 ⁱ $O10^{i}$ —La1—O15 $O21^{i}$ —La1—O15 $O10^{i}$ —La1—O20 $O21^{i}$ —La1—O20 O15—La1—O20 $O10^{i}$ —La1—O1 $O21^{i}$ —La1—O1 O15—La1—O1 $O10^{i}$ —La1—O1 $O10^{i}$ —La1—O16 ⁱⁱ $O21^{i}$ —La1—O16 ⁱⁱ O15—La1—O16 ⁱⁱ	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11B—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11 N3—C12—C11 C14—C13—C18	123.8 (4) 118.1 118.1 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3) 114.8 (3) 119.3 (3)
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O15 - La1 - O20$ $O15 - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O15 - La1 - O1$ $O15 - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O21^{i} - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O20 - La1 - O16^{ii}$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11B—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11 N3—C12—C11 C14—C13—C18 C14—C13—N3	123.8 (4) 118.1 118.1 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3) 114.8 (3) 119.3 (3)
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O15 - La1 - O20$ $O15 - La1 - O1$ $O21^{i} - La1 - O1$ $O20 - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O21^{i} - La1 - O16^{ii}$ $O20 - La1 - O16^{ii}$ $O20 - La1 - O16^{ii}$ $O1 - La1 - O16^{ii}$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7) 77.47 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11B—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11 N3—C12—C11 C14—C13—C18 C14—C13—N3 C18—C13—N3	123.8 (4) 118.1 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3) 114.8 (3) 119.3 (3) 117.3 (3)
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O21^{i} - La1 - O20$ $O15 - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O20^{-} La1 - O1$ $O15 - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O21^{i} - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O10^{i} - La1 - O16^{ii}$ $O10^{i} - La1 - O16^{ii}$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7) 77.47 (7) 119.68 (7)	N2—C10—C9 N2—C10—H10 C9—C10—H10 C12—C11—H11A C12—C11—H11B H11A—C11—H11B C12—C11—H11C H11A—C11—H11C H11B—C11—H11C O14—C12—N3 O14—C12—C11 N3—C12—C11 C14—C13—C18 C14—C13—N3 C18—C13—N3 C15—C14—C13	123.8 (4) 118.1 109.5 123.9 (3) 114.8 (3) 117.3 (3) 123.5 (3) 120.5 (3) 12
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O1^{i} - La1 - O20$ $O15 - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O20 - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O10^{i} - La1 - O11$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7) 77.47 (7) 119.68 (7) 78.85 (7)	N2-C10-C9 N2-C10-H10 C9-C10-H10 C12-C11-H11A C12-C11-H11B H11A-C11-H11B C12-C11-H11C H11A-C11-H11C H11B-C11-H11C O14-C12-O11 O14-C12-C11 N3-C12-C11 C14-C13-C18 C14-C13-N3 C18-C13-N3 C15-C14-C13 C15-C14-H14	123.8 (4) 118.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 123.9 (3) 121.3 (3) 114.8 (3) 119.3 (3) 117.3 (3) 123.5 (3) 120.8 (3) 119.6
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O1^{i} - La1 - O20$ $O15 - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O15 - La1 - O1$ $O15 - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O21^{i} - La1 - O16^{ii}$ $O15 - La1 - O16^{ii}$ $O10^{i} - La1 - O11$ $O21^{i} - La1 - O11$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7) 77.47 (7) 119.68 (7) 78.85 (7) 76.15 (6)	N2-C10-C9 N2-C10-H10 C9-C10-H10 C12-C11-H11A C12-C11-H11B H11A-C11-H11B C12-C11-H11C H11B-C11-H11C H11B-C11-H11C H11B-C12-N3 O14-C12-N3 O14-C12-C11 N3-C12-C11 C14-C13-C18 C14-C13-N3 C18-C13-N3 C18-C13-N3 C15-C14-H14 C13-C14-H14	123.8 (4) 118.1 109.5 123.9 (3) 114.8 (3) 117.3 (3) 123.5 (3) 120.8 (3) 119.6 119.6
$N8 - H8$ $O10^{i} - La1 - O21^{i}$ $O10^{i} - La1 - O15$ $O21^{i} - La1 - O15$ $O10^{i} - La1 - O20$ $O15^{i} - La1 - O20$ $O15^{i} - La1 - O20$ $O10^{i} - La1 - O1$ $O21^{i} - La1 - O1$ $O20^{i} - La1 - O1$ $O15^{i} - La1 - O1$ $O10^{i} - La1 - O16^{ii}$ $O10^{i} - La1 - O16^{ii}$ $O15^{i} - La1 - O16^{ii}$ $O15^{i} - La1 - O16^{ii}$ $O15^{i} - La1 - O16^{ii}$ $O10^{i} - La1 - O11$ $O21^{i} - La1 - O11$ $O21^{i} - La1 - O11$ $O20^{i} - La1 - O11$	0.8600 71.49 (8) 146.41 (8) 141.98 (8) 79.17 (7) 119.96 (7) 78.48 (6) 135.58 (7) 70.64 (7) 75.22 (6) 141.13 (7) 76.46 (6) 84.20 (7) 104.41 (6) 137.39 (7) 77.47 (7) 119.68 (7) 78.85 (7) 76.15 (6) 72.14 (7)	N2-C10-C9 N2-C10-H10 C9-C10-H10 C12-C11-H11A C12-C11-H11B H11A-C11-H11B C12-C11-H11C H11A-C11-H11C H11B-C11-H11C H11B-C11-H11C O14-C12-N3 O14-C12-C11 N3-C12-C11 C14-C13-C18 C14-C13-N3 C18-C13-N3 C18-C13-N3 C15-C14-C13 C15-C14-H14 C13-C14-H14 C13-C14-H14 C16-C15-C14	123.8 (4) 118.1 118.1 109.5 123.9 (3) 114.8 (3) 117.3 (3) 123.5 (3) 120.8 (3) 119.6 119.6 119.8 (3)

O16 ⁱⁱ —La1—O11	150.42 (7)	C14—C15—H15	120.1
O10 ⁱ —La1—O2	76.66 (7)	C15—C16—C17	120.0 (3)
O21 ⁱ —La1—O2	143.98 (7)	C15—C16—S1	121.1 (2)
O15—La1—O2	71.94 (6)	C17—C16—S1	118.9 (2)
O20—La1—O2	68.44 (6)	C18—C17—C16	120.4 (3)
O1—La1—O2	127.18 (6)	C18—C17—H17	119.8
O16 ⁱⁱ —La1—O2	72.22 (6)	C16—C17—H17	119.8
O11—La1—O2	133.04 (6)	C17—C18—C13	119.7 (3)
O13—S1—O12	119.51 (15)	C17—C18—H18	120.1
O13—S1—N4	107.25 (14)	C13—C18—H18	120.1
O12—S1—N4	104.86 (13)	N4	111.1 (2)
O13—S1—C16	107.34 (14)	N4—C19—H19A	109.4
O12—S1—C16	108.83 (14)	С20—С19—Н19А	109.4
N4—S1—C16	108.67 (13)	N4—C19—H19B	109.4
O18—S2—O17	119.95 (13)	C20-C19-H19B	109.4
O18—S2—N6	108.07 (12)	H19A—C19—H19B	108.0
O17—S2—N6	106.06 (12)	O10-C20-O11	125.3 (3)
O18—S2—C26	105.53 (13)	O10—C20—C19	118.1 (2)
O17—S2—C26	107.46 (12)	O11—C20—C19	116.6 (2)
N6—S2—C26	109.53 (13)	C22—C21—H21A	109.5
O23—S3—O22	119.92 (13)	C22—C21—H21B	109.5
O23—S3—N8	109.74 (13)	H21A—C21—H21B	109.5
O22—S3—N8	105.41 (13)	C22—C21—H21C	109.5
023—S3—C36	106.02 (14)	H21A—C21—H21C	109.5
O22—S3—C36	108.98 (13)	H21B—C21—H21C	109.5
N8—S3—C36	106.02 (13)	019—022—N5	123.4 (3)
LaI—OI—HIW	124.8	019-022-021	120.7(3)
LaI—OI—H2W	121.2	$N_{2} = C_{22} = C_{21}$	115.9(3)
$H_{W} = 01 = H_{W}$	112.0	$C_{28} = C_{23} = C_{24}$	119.0(3) 122.2(2)
La1 = O2 = H4W	121.2	$C_{23} - C_{23} - N_{5}$	123.3(3) 117.1(3)
$H_{3W} = \Omega_{2} = H_{4W}$	110.5	$C_{24} = C_{23} = 103$	117.1(3) 120 5 (3)
н5W—03—Н6W	110.0	C25-C24-H24	120.5 (5)
H7W_04_H8W	111.8	C23—C24—H24	119.7
H9W—O5—H10W	111.9	C24—C25—C26	120.1 (3)
H11W—O6—H12W	109.2	C24—C25—H25	120.0
H13W—O7—H14W	110.9	C26—C25—H25	120.0
H15W—O8—H16W	105.5	C27—C26—C25	119.5 (3)
H17W—O9—H18W	137.0	C27—C26—S2	120.0 (2)
C20—O10—La1 ⁱ	160.8 (2)	C25—C26—S2	120.5 (2)
C20	124.64 (18)	C26—C27—C28	120.6 (3)
C30—O15—La1	171.01 (18)	С26—С27—Н27	119.7
C30—O16—La1 ⁱⁱ	121.43 (17)	C28—C27—H27	119.7
C40—O20—La1	133.60 (18)	C23—C28—C27	119.7 (3)
C40—O21—La1 ⁱ	156.3 (2)	C23—C28—H28	120.2
C1—N1—C5	115.3 (4)	C27—C28—H28	120.2
C10—N2—C6	115.4 (3)	N6—C29—C30	113.0 (2)

C12—N3—C13	128.7 (3)	N6—C29—H29A	109.0
C12—N3—H3	115.6	С30—С29—Н29А	109.0
C13—N3—H3	115.6	N6—C29—H29B	109.0
C19—N4—S1	120.13 (19)	С30—С29—Н29В	109.0
C19—N4—H4	115.4	H29A—C29—H29B	107.8
S1—N4—H4	111.8	O15—C30—O16	124.1 (2)
C22—N5—C23	128.6 (3)	O15—C30—C29	119.7 (2)
C22—N5—H5	115.7	O16—C30—C29	116.1 (2)
C23—N5—H5	115.7	С32—С31—Н31А	109.5
C29—N6—S2	123.50 (18)	С32—С31—Н31В	109.5
C29—N6—H6	118.3	H31A—C31—H31B	109.5
S2—N6—H6	118.3	C32—C31—H31C	109.5
C32—N7—C33	127.8 (3)	H31A—C31—H31C	109.5
С32—N7—Н7	116.1	H31B—C31—H31C	109.5
C33—N7—H7	116.1	O24—C32—N7	123.4 (4)
C39—N8—S3	122.6 (2)	O24—C32—C31	122.0 (4)
C39—N8—H8	118.7	N7—C32—C31	114.6 (4)
S3—N8—H8	118.7	C38—C33—C34	118.4 (3)
N1—C1—C2	124.5 (4)	C38—C33—N7	123.9 (3)
N1—C1—H1	117.8	C34—C33—N7	117.7 (3)
C2—C1—H1	117.8	C35—C34—C33	121.2 (3)
C1—C2—C3	120.1 (4)	С35—С34—Н34	119.4
C1—C2—H2	120.0	С33—С34—Н34	119.4
С3—С2—Н2	120.0	C34—C35—C36	119.3 (3)
C2—C3—C4	116.0 (4)	С34—С35—Н35	120.4
C2—C3—C8	121.9 (3)	С36—С35—Н35	120.4
C4—C3—C8	122.0 (4)	C37—C36—C35	119.9 (3)
C5—C4—C3	120.0 (4)	C37—C36—S3	120.3 (2)
С5—С4—Н4А	120.0	C35—C36—S3	119.8 (2)
C3—C4—H4A	120.0	C36—C37—C38	120.7 (3)
N1—C5—C4	124.1 (4)	С36—С37—Н37	119.7
N1—C5—H5A	117.9	С38—С37—Н37	119.7
С4—С5—Н5А	117.9	C37—C38—C33	120.5 (3)
N2—C6—C7	124.5 (3)	С37—С38—Н38	119.8
N2—C6—H6A	117.7	С33—С38—Н38	119.8
С7—С6—Н6А	117.7	N8—C39—C40	112.1 (2)
C6—C7—C8	119.6 (4)	N8—C39—H39A	109.2
С6—С7—Н7А	120.2	С40—С39—Н39А	109.2
С8—С7—Н7А	120.2	N8—C39—H39B	109.2
С7—С8—С9	116.7 (3)	С40—С39—Н39В	109.2
C7—C8—C3	122.0 (3)	H39A—C39—H39B	107.9
C9—C8—C3	121.2 (3)	O21—C40—O20	125.6 (3)
C8—C9—C10	120.0 (4)	O21—C40—C39	117.5 (2)
С8—С9—Н9	120.0	O20—C40—C39	116.9 (2)
С10—С9—Н9	120.0		
O10 ⁱ —La1—O11—C20	-0.6 (2)	C14—C13—C18—C17	0.2 (5)
O21 ⁱ —La1—O11—C20	-61.6 (2)	N3—C13—C18—C17	179.2 (3)
O15-La1-O11-C20	147.3 (2)	S1—N4—C19—C20	-172.33 (19)

O20—La1—O11—C20	65.1 (2)	La1 ⁱ —O10—C20—O11	-65.3 (7)
O1—La1—O11—C20	-134.4 (2)	La1 ⁱ —O10—C20—C19	114.3 (5)
O16 ⁱⁱ —La1—O11—C20	-117.9 (2)	La1-O11-C20-O10	19.9 (4)
O2—La1—O11—C20	99.1 (2)	La1-011-C20-C19	-159.66 (18)
O10 ⁱ —La1—O20—C40	38.9 (2)	N4-C19-C20-O10	2.6 (4)
O21 ⁱ —La1—O20—C40	-22.2 (3)	N4—C19—C20—O11	-177.8 (2)
O15—La1—O20—C40	-166.3 (3)	C23—N5—C22—O19	-1.3 (6)
O1—La1—O20—C40	-118.2 (2)	C23—N5—C22—C21	178.5 (3)
O16 ⁱⁱ —La1—O20—C40	94.8 (3)	C22—N5—C23—C28	8.6 (5)
O11—La1—O20—C40	-87.3 (3)	C22—N5—C23—C24	-172.1 (3)
O2—La1—O20—C40	118.7 (3)	C28—C23—C24—C25	-1.3 (5)
O13—S1—N4—C19	-54.5 (3)	N5-C23-C24-C25	179.4 (3)
O12—S1—N4—C19	177.4 (2)	C23—C24—C25—C26	0.3 (5)
C16—S1—N4—C19	61.2 (3)	C24—C25—C26—C27	0.6 (5)
O18—S2—N6—C29	-35.9 (3)	C24—C25—C26—S2	-176.7 (2)
O17—S2—N6—C29	-165.7 (2)	O18—S2—C26—C27	-134.9 (2)
C26—S2—N6—C29	78.6 (2)	O17—S2—C26—C27	-5.8 (3)
O23—S3—N8—C39	44.2 (3)	N6—S2—C26—C27	108.9 (3)
O22—S3—N8—C39	174.6 (2)	O18—S2—C26—C25	42.4 (3)
C36—S3—N8—C39	-69.9 (3)	O17—S2—C26—C25	171.5 (2)
C5—N1—C1—C2	1.2 (7)	N6—S2—C26—C25	-73.7 (3)
N1—C1—C2—C3	0.1 (6)	C25—C26—C27—C28	-0.5 (5)
C1—C2—C3—C4	-1.5 (6)	S2—C26—C27—C28	176.9 (3)
C1—C2—C3—C8	175.3 (4)	C24—C23—C28—C27	1.4 (5)
C2—C3—C4—C5	1.4 (7)	N5-C23-C28-C27	-179.3 (3)
C8—C3—C4—C5	-175.4 (4)	C26—C27—C28—C23	-0.5 (5)
C1—N1—C5—C4	-1.3 (8)	S2—N6—C29—C30	165.5 (2)
C3—C4—C5—N1	0.0 (9)	La1 ⁱⁱ —O16—C30—O15	19.3 (4)
C10—N2—C6—C7	-0.7 (5)	La1 ⁱⁱ —O16—C30—C29	-158.89 (18)
N2—C6—C7—C8	0.3 (5)	N6—C29—C30—O15	-1.5 (4)
C6—C7—C8—C9	0.2 (5)	N6-C29-C30-O16	176.8 (2)
C6—C7—C8—C3	-177.3 (3)	C33—N7—C32—O24	-4.5 (7)
C2—C3—C8—C7	33.0 (5)	C33—N7—C32—C31	173.5 (4)
C4—C3—C8—C7	-150.4 (4)	C32—N7—C33—C38	1.1 (6)
C2—C3—C8—C9	-144.4 (4)	C32—N7—C33—C34	-177.6 (4)
C4—C3—C8—C9	32.2 (6)	C38—C33—C34—C35	-2.0 (5)
C7—C8—C9—C10	-0.3 (6)	N7—C33—C34—C35	176.8 (3)
C3—C8—C9—C10	177.2 (4)	C33—C34—C35—C36	0.7 (5)
C6—N2—C10—C9	0.6 (6)	C34—C35—C36—C37	0.8 (5)
C8—C9—C10—N2	-0.1 (7)	C34—C35—C36—S3	179.8 (3)
C13—N3—C12—O14	-3.9 (5)	O23—S3—C36—C37	-13.3 (3)
C13—N3—C12—C11	175.4 (3)	O22—S3—C36—C37	-143.7 (3)
C12—N3—C13—C14	-171.7 (3)	N8—S3—C36—C37	103.3 (3)
C12—N3—C13—C18	9.3 (5)	O23—S3—C36—C35	167.7 (2)
C18—C13—C14—C15	-0.9 (5)	O22—S3—C36—C35	37.3 (3)
N3—C13—C14—C15	-180.0 (3)	N8—S3—C36—C35	-75.7 (3)
C13-C14-C15-C16	0.4 (5)	C35—C36—C37—C38	-0.8 (5)

C14-C15-C16-C17	1.0 (5)	S3—C36—C37—C38	-179.9 (3)
C14—C15—C16—S1	-179.7 (2)	C36—C37—C38—C33	-0.5 (6)
O13—S1—C16—C15	5.6 (3)	C34—C33—C38—C37	1.9 (5)
O12—S1—C16—C15	136.2 (3)	N7—C33—C38—C37	-176.8 (3)
N4—S1—C16—C15	-110.1 (3)	S3—N8—C39—C40	-112.7 (2)
O13—S1—C16—C17	-175.0 (2)	La1 ⁱ —O21—C40—O20	25.1 (7)
O12—S1—C16—C17	-44.4 (3)	La1 ⁱ —O21—C40—C39	-156.4 (4)
N4—S1—C16—C17	69.3 (3)	La1-O20-C40-O21	9.6 (5)
C15-C16-C17-C18	-1.7 (5)	La1-O20-C40-C39	-168.93 (18)
S1-C16-C17-C18	178.9 (2)	N8—C39—C40—O21	47.5 (4)
C16-C17-C18-C13	1.1 (5)	N8—C39—C40—O20	-133.9 (3)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) -x, -y+1, -z.		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O1—H1W···O23 ⁱ	0.82	2.11	2.872 (3)	153
O1—H2W···O2 ⁱⁱ	0.83	1.99	2.818 (3)	179
O2—H3W···N2	0.84	2.00	2.827 (4)	171
O2—H4W···O4 ⁱⁱ	0.83	1.98	2.744 (3)	154
O3—H5W···O9 ⁱⁱⁱ	0.85	1.98	2.801 (4)	162
O3—H6W···O14 ^{iv}	0.84	1.94	2.772 (3)	175
$O4$ — $H7W$ ···· $N1^{v}$	0.83	1.99	2.781 (4)	158
O4—H8W···O12 ^{vi}	0.82	2.41	3.166 (3)	154
O4—H8W···S1 ^{vi}	0.82	2.94	3.711 (3)	156
O5—H9W…O4	0.84	2.04	2.865 (4)	167
O5—H10W…O11	0.83	2.03	2.844 (4)	168
O6—H11W…O5	0.84	1.91	2.716 (4)	160
O6—H12W…O18	0.84	2.01	2.805 (3)	158
O7—H13W…O13	0.83	2.12	2.914 (4)	160
O7—H14W…O6	0.84	2.00	2.810 (4)	165
O8—H15W…O19 ^v	0.83	2.00	2.722 (4)	145
O8—H16W…O7	0.91	1.88	2.708 (4)	151
O9—H17W…O8	0.83	2.00	2.751 (4)	151
N3—H3···O6 ^{vii}	0.86	2.15	3.007 (4)	171
N4—H4…O16 ^{viii}	0.85	2.30	3.151 (3)	173
N5—H5···O3 ^{vii}	0.86	2.06	2.921 (4)	177
N6—H6…O20	0.86	2.19	3.040 (3)	169
N7—H7···O8 ^{ix}	0.86	2.02	2.878 (4)	172
N8—H8…O17	0.86	2.33	2.974 (3)	131

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*+2, -*y*+2, -*z*+1; (iv) -*x*+2, -*y*+1, -*z*+1; (v) *x*, *y*+1, *z*; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*, *y*-1, *z*.

Fig. 2